Tragaldabas-3: Modes of the variability of the new Tragaldabas data set: atmospheric, cosmic rays and geomagnetic effects

Anna Morozova, CITEUC, Coimbra

Main results:

- The new 6h binned Tragas data set (March 2015 April 2017) is analysed for modes th co-vary with CR flux measured by a neutron monitor, geomagnetic field and meteorological parameters.
- Correlations between the Tragas data and CR & geomagnetic field are high
- On the whole, the still existing atmospheric effect do not exceed 5-6% of the total variability of the Tragas data measured for different zenith angles and averaged for all azimuthal angles

Input data sets:

- new 6h Tragas data set (March 2015 April 2017)
- Outdoor temperature (*T_{ext}*) and pressure (*p_{ext}*) measured at Santiago de Compostela, same time resolution
- CaLMa Neutron monitor (*CR NM*) data from the NMDB (same time resolution)
- Horizontal component of the geomagnetic field (*COIH*) measured at the Coimbra Geomagnetic Observatory (daily means)

For each of the six θ -angle bins, the data from all the eight φ channels are summed up (six $\Sigma \varphi$ data series);

The **Σφ** data are truncated to remove the "fringe" using a Gaussian approximation for the **Σφ** histograms (truncated left wing of the histograms);

The $\Sigma \phi$ truncated series:

Ę

All truncated data and all "0" are linearly interpolated;

Interpolated series are smoothed (approx. 1-day smoothing procedure);

- Three time intervals are defined:
 - 2015 March 24 (DOY83) 0h 2016 June 22 (DOY 174) 6h
 - 2016 July 27 (DOY 209) 0h 2016 September 21 (DOY 265) 12h
 - 2016 September 21 (DOY 265) 18h 2017 April 30 (DOY 120) 18h)

Other data pre-processing:

- All gaps are linearly interpolated;
- All data are smoothed same way as Tragas data

PCA analysis:

- The Tragas smoothed series are submitted to the principal component analysis (PCA): six Σφ series for each of the three time intervals);
- Percentage of the total variability explained by each of the PCs:

PC #	interval 1	Interval 2	Interval 3
1	94.78%	99.87%	92.79%
2	4.68%	0.09%	5.95%
3	0.38%	0.03%	0.9%
4	0.08%		0.26%
5	0.06%		0.06%
6	0.02%		0.04%

PCA analysis - PCs:

PCA analysis:

- Only PC1 and PC2 are significant for the time intervals 1 and 3;
- For the 2nd time interval there is only one significant PC PC1;
- 2nd time interval was excluded from the further analysis (also because it's too short relatively to others);

Correlation analysis:

- PC1 and PC2 for the 1st and the 3rd time intervals were correlated wit the CR NM, COI H, T_{ext} and p_{ext} series;
- NB: The 3rd time interval can be also divided into two (before and after 2017 January 1) – see Figures;
- Correlation coefficients (*r*) for different time intervals

	interval 1	Interval 3	interval 1	Interval 3
	PCs vs NM		PCs vs COI H	
PC1	0.34	0.72	0.5	0.52
		0.51 0.55		0.63 0.00
PC2	0	0	0	0
	PCs vs T _{ext}		PCs vs p _{ext}	
PC1	0	0.44	0	0
		0.68 0.18		0.00 0.38
PC2	0.4	0	0.67	0.35
		0.00 0.00		0.41 0.90

PC1:

 PC1 is the component of the Tragas Σφ series that correlate quite well with the CR flux measured by the NM;

PC1 (1st time interval):

 For the 1st time interval the correlation coefficient is relatively low due to different trends of the Tragas and NM series, mostly for the first ~300 days);

PC1 (3rd time interval):

 For the 3rd time interval the correlation coefficient is high due to similar trends of the Tragas and NM series, but for a shorter time interval the r is ~0.5

PC1:

PC1 is the component of the Tragas Σφ series that correlate well with the geomantic field (COI H);

PC1 (1st time interval):

- The correlation coefficients are similar for the 1st and the 3rd time intervals;
- In many cases some characteristic features in COI H and Tragas series coinside;

PC1 (3rd time interval):

Starting from around January 2017 the correlation is less prominent;

PC1:

 Though the *r* between the PC1 and the T_{ext} series are high for some time intervals, they seem to appear from the similar global; There is no similarity between the details of the variations of both series;

PC1:

Correlation between the PC1 and pressure variations is close to zero;

PC1 - conclusion:

- The 1st mode of the variations of the Tragas Σφ series explains 93-95% of the variability of the input data;
- This is the component related to the geophysical parameters: cosmic rays, geomagnetic field solar wind etc.;
- This component show no significant/persistent co-variations with the meteorological parameters measured at the ground level;

PC2 shows no correlations with the NM series;

 PC2 shows no correlations with the COI H series (except, occasionally, for global trends, but these correlations don't persist);

 PC2 shows correlates relatively well with T_{ext} series for the 1st time interval (March 2015 – June 2016), before the long break. However, in the 3rd time interval this correlation disappears.

PC2 (1st time interval):

• Correlations:

PC2 (3rd time interval):

No correlation/anti-correlation (even on short time intervals);

 From the correlation analysis is seems that the PC2 is the "pressure" mode: for both studied intervals and on the long- and short-terms there are high (anti)correlations;

PC2 (1st time interval):

PC2 (1st time interval):

• Same as previous Figure but with reversed pressure Y-axis for better visualization:

PC2 (3rd time interval):

NB: please note that the sign of the PCs are arbitrary and based on some assumption of the data variability. Probably, in this case the sign for the PC2 for the 3^{rd} time interval should be opposite (to keep the anti-correlation with the p_{ext} series);

PC2 - conclusion:

- The 2nd mode of the variations of the Tragas Σφ series explains 5-6% of the variability of the input data;
- This is the component related to the atmospheric pressure variations;
- No significant correlations with ground measured atmospheric temperature as well as with geophysical parameters (CR, geomagnetic field) are found;

Final notes:

- It is still possible that a temperature effect exists it was shown that in the previous version of the Tragas data this effect was prominent only when all the θ and ϕ channels are submitted to the PCA (not just $\Sigma\phi$ series) \rightarrow further analysis of the new Tragas data is needed;
- 6h time resolution is OK (for the PCA and correlation analyses), but some way to treat the "fringe" – outliers to the directions of the lower data, is needed (the outliers to the "higher" directions are easier to treat since they are quite rare and well identified);
- Probably, the "fringe" could be a smaller problem when φ-channels are considered separately.

Sorry I couldn't manage to come to the Tragas meeting this year... 🟵